
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Advanced Practical - Building ALVIS, a web-based graph
visualization tool
TILLMANN FEHRENBACH, Heidelberg University, Germany

1 INTRODUCTION
We aim to provide an easily accessible visualization tool for graph data and for graph algorithms.
This report is an intermediate snapshot of the current state of the project.
In section 2 we want to introduce the reader to the main tech stack for building such an application.
We layout some of the third party libraries used, then give an overview on WebAssembly and also
elaborate on doing visualizations via WebGl and Three.js. Then we give an overview of the User
Interface and some design choices.
In section 3 we delve into the field of graph drawing. First we introduce to the general problem
and briefly discuss different graph drawing approaches. Then we discuss a classical Force Directed
graph drawing algorithm and an improvement to scale the approach to larger graph data sets using
Multidimensional Scaling and Stochastic Gradient Descent. Additionally we look at two other
approaches to visualize tree data sets i.e. spherical tree drawing in Euclidean space and on the
Poincare Disk.
In section 4 we provide a brief conclusion and ideas for future work.

2 WEB DEVELOPMENT OVERVIEW
2.1 Tech Stack
A tech stack is a combination of programming languages, databases, and frameworks used to
create a complex web application or website. A typical web development stack is usually a mix of
front-end and back-end technologies that include:
• Front-end Framework: Libraries of code written by other developers. These can help building

a web application without starting from scratch. We use React.js, a widely used framework
for building user interfaces. The architecture of React.js is based on the concept of virtual
DOM (Document Object Model). React.js keeps track of changes in the virtual DOM and
only updates the parts of the actual DOM that need to change which is great for user
interactivity. It works by breaking down a user interface into components and rendering
these components on the page as HTML.
• Front-end Back-end communication: Since we use Node.js as a JavaScript runtime, a natural
way to handle HTTP requests and responses and to do URL routing was Express.js. The
communication between the front-end and back-end should be reduced as much as possible
in this project. Hence Express is merely used to send new data sets from the back-ends data-
base to the users browser, which makes the design of a complicated back-end infrastructure
redundant and tries to use the users hardware resources as best as possible.
• Databases: The user should be able to choose from a wide variety of graph data sets or store

computed visualizations of those externally. Any data is stored as a JSON file in a MongoDB
database and it can be transferred to and from the front-end. We chose MongoDB due to its
ease of use and its perfected integration into Express/Node.js. The need for a complicated
relational data base seemed an overkill when designing the general architecture of the app.
Going forward, these design choices might change.

Author’s address: Tillmann Fehrenbach, tillmann.fehrenbach@gmail.com, Heidelberg University, Im Neuenheimer Feld 205,
Heidelberg, Baden-Württemberg, Germany, 69120.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Tillmann Fehrenbach

• Programming languages: For every problem to be solved there is a whole set of programming
languages available. JavaScript has been the main language for bringing logic to a website
for the last 20 years, while HTML brings structure to a web-page and CSS makes things
look "nice". Even though this is still common practice nowadays, there are issues with
JavaScript, mainly with performance, since it is an inherently interpreted language. It works
fine for a standard web applications where small pieces of processing is done inside the
web browser, based on user interaction. Generally, the heavy processing is done on servers,
and the browser interacts with them through http services. But this transfer is an important
bottleneck when lot of real-time processing is required, for example image video processing,
3D gaming, AR/VR and just complex algorithmic problems in general including algorithms
that act on huge graph data sets. One common approach nowadays is to outsource the
required computations via WebAssembly on the users device directly.

2.2 An introduction to WebAssembly
Web Assembly (Wasm) is a low-level binary format for executing code on the web. It is designed to
be a fast and efficient way of delivering applications and high-performance code to the web browser,
with performance close to native code. It is supposed to work alongside JavaScript, allowing
developers to write parts of their application in another low level language such as C++, resulting
in a hybrid application as it is in our case. Wasm itself is a compilation target, which means that
code written in another programming language can be compiled to Wasm and run in a web browser
via a specialized compiler, i.e. the Emscripten compiler for C/C++. It is designed to be secure and
sand-boxed, meaning that code executed in Wasm runs in a secure environment that is separate
from the rest of the web page.
Wasm also provides a number of advanced features, including low-level memory access and multi-
threading support. In the case of C++ we can also make use of third party libraries such as Boost
for very optimized linear algebra operations. Some libraries need to be passed to the compilation
process as well, making the compilation process rather slow, others (e.g Boost) have already been
precompiled by others to the appropriate format and can be included during the compilation process
efficiently. The main drawback of using WebAssembly nowadays is the lack of a big community.
The documentation for integrating WebAssembly into a React App is basically non existent, which
made the development very tedious.
Our design choice was to outsource all computationally expensive/interesting parts to a C++ Wasm
Module. This includes finding the proper Layout of the data set (more on that in the section about
Graph drawing) and executing an algorithm on a given graph data set by using our Visualization
Logger (more on that in the Data Flow part). Figure 1 gives an overview of the general workflow of
a Wasm component. The important part is that the WebAssembly can run in a separate web-worker,
which prevents blocking the main thread (UI).

2.3 Handling graphics in the Browser
The goal of our App is to provide interactive 2D and 3D Visualizations of Data, hence the choice of
the right Graphics Pipeline was an important one. WebGL (Web Graphics Library) is a low-level
JavaScript API for rendering interactive 3D graphics within a web browser, by communicating
directly with the GPU/integrated Graphics Cards of the user’s device, allowing for high-performance
graphics rendering. WebGl is a wrapper around the relatively old but still popular OpenGl. Three.js
is a widely used abstraction layer on top of WebGl, that lets the user focus on the manipulation
of a geometry in space over time, rather than dealing with the rendering process, which includes
writing vertex shaders, the rasterization process and applying colors and textures via fragment
shaders. We make make use of the primitive geometries provided by Three.js in order to display a



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Advanced Practical - Building ALVIS, a web-based graph visualization tool 3

Fig. 1. General Workflow of a Wasm component.

graphs nodes (Spheres) and edges (Bezier-Splines). Morphing geometries over time requires an
iterative update of all the vertices of a given mesh, which becomes a bottleneck for huge graphs.
Since our visualization consists of repeating geometries, ’instancing’ comes in handy, which is the
practice of rendering multiple copies of the same mesh in a scene at once, by duplicating vertex
data across all instanced meshes. Instancing still allows partial differentiation of attributes, such as
position and color.
At the time writing this article, there have been some major design changes, which include a
more modern approach of GPU programming, namely WebGPU. WebGPU is considered to be the
future standard for Web Browsers to do all sorts of Graphics. It is a GPU API written in the Rust
Programming Language (very fast), that serves as a wrapper around the newer Graphics API’s such
as Vulkan etc. Most importantly, it is possible to write Compute Shaders in WebGPU which makes
General Purpose Programming on the GPU possible. The shading language is not GLSL (OpenGl)
but WGSL, a shading language with a Rust-like syntax. WebGPU will slowly but steadily replace
large parts of our apps WebAssembly part, since it allows highly parallelized computation which is



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Tillmann Fehrenbach

Fig. 2. The User Interface

of great advantage, especially when it comes to SIMD tasks such as large linear algebra operations.
A future report will elaborate on that in much more depth.

2.4 Designing the UI
Our goal was to design a user friendly interface that enables the user to choose what data set shall
be displayed and what type of algorithm shall be visualized. The UI can be seen in Figure 2. On
the left side of the screen, the user is able to pick between an explanatory (About) section written
with Mathjax, that provides a more or less interactive introduction to the general problem that
some chosen graph algorithm tries to solve, furthermore a section with plain Pseudocode and the
actual implementation in C++ can be seen. The C++ implementation section highlights active lines
of the code during an algorithms visualization. On the right hand side the actual graph is being
displayed. The user can chose between the Algorithms Visualization (default) but also display
the evolution of the graph drawing over time, usually a mesmerizing process in which a cloud of
randomly positioned points unfolds to a beautiful geometric structure. The user is also able to pick
between a visualization in 2D and 3D. On the bottom of the page a time line shows the progress of
an algorithm and lets the user freely jump forth and back in time. The speed of the animation can
also be adjusted. In the search bar on the left an algorithm from a predefined set of algorithms can
be picked (all Wasm files), in the search bar on the right the data set from a predefined set of graph
data sets can be chosen which is then served by the MongoDB database.
Since the computationally expensive WebAssembly Parts are not done on the main thread, the
general user experience is smooth and enables true interactivity, which was after all the main goal
of this project.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Advanced Practical - Building ALVIS, a web-based graph visualization tool 5

2.5 Data Flow and Logging State
The state changes that yield the later algorithms visualization are calculated during the actual algo-
rithms execution inside a web-worker. We wrote a simple C++ logger library for graph algorithms
that enables the designer of a visualization to pick a graph algorithm and mark active nodes or edges
during the execution. The library will automatically log the events without further interference.
The designer (not the user of the app) can hence pick an existing algorithm and easily expand it
with the logging commands. For example when trying to visualize a network flow algorithm, the
active and non active nodes and edges can be colored differently, but also the values (such as the
excess of a node or the flow through and edge) can be logged. During the algorithms visualization
in the UI, all state changes are considered at every time step. An important note is that the logger
only logs the actual changes of states and not the full state of the graph at any given time in order
to minimize resources and the keep the JSON file that gets transferred from the C++/Wasm part to
the JavaScript/WebGl part as small as possible. Figure 3 gives a more detailed overview of the data
flow between the JavaScript and WebAssembly components.

3 VISUALIZING GRAPH DATA
3.1 What is a Graph?
A graph𝐺 = (𝑉 , 𝐸) is a mathematical representation of a set of objects and their relationships. The
nodes 𝑉 represent the objects, while the edges 𝐸 represent the relationships between these objects.
Graphs can be used to model many real-world situations, such as social networks, transportation
systems or communication networks. Graph algorithms are used to solve a wide range of problems,
including path finding, maximum Flow, minimum spanning trees, graph coloring etc. There are
several types of graphs that can be visualized with our app, including directed graphs (where edges
have a direction), undirected graphs (where edges have no direction) or weighted graphs (where
edges have a weight or cost).

3.2 What is graph drawing?
Graph drawing is an area in mathematics and computer science combining methods from geomet-
ric graph theory and information visualization to derive two-dimensional or three-dimensional
depictions of graphs. The goal of graph drawing is to provide a meaningful and visually appealing
representation of a graph, allowing for easy interpretation and analysis of the relationships between
elements.
There are a lot of different quality measures defined for graph drawing, that are crucial for aesthetics
and usability such as the number of edges that cross each other (crossing number), preservation of
symmetry and finding these symmetry groups, the area and aspect ratio and mostly to keep the
edges between nodes as straight and short as possible.

There are several different approaches to meet these requirements. A few of them include:

• Force-directed graph drawing: This approach uses physical simulations, such as forces
between nodes, to determine the layout of a graph.
• Tree drawing: This approach focuses on visualizing hierarchical structures, such as trees
and directed acyclic graphs. The goal is to create a clear and concise representation of the
parent-child relationships in the graph.
• Circular layout: This approach arranges nodes in a circular arrangement, choosing carefully
the ordering of the vertices around the circle to reduce crossings.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Tillmann Fehrenbach

Fig. 3. Overview of the data flow between the components.

• Arc diagrams: This approach places vertices on a line, the edges are drawn as semicircles
above or below the line, or as smooth curves linked together from multiple semicircles.

The choice of approach depends on the specific needs and requirements of the graph being
drawn. In general the above approaches, such as force directed-and tree drawings, are not bounded
to euclidean space. For example, a drawing on the Poincare Disk might be preferred to preserve
some hyperbolic properties of a graph or to simply have a fish-eye view on a part of the graph. In



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Advanced Practical - Building ALVIS, a web-based graph visualization tool 7

the following we want to look at the most common approach, the force directed graph drawing,
and an approach to scale the algorithm to very large graphs efficiently.

3.3 In depth: force directed Graph drawing
Force-directed graph drawing is a graph drawing method by simulating physical forces between
nodes in a graph. Usually, spring-like forces based on Hooke’s law are used to attract pairs of
nodes of the graph, simulating the nodes as points of mass in the underlying space. A common
simplification is to only compute attractive forces between nodes that are actually connected
through an edge in the graph. Simultaneously, repulsive forces based on Coulomb’s law are used to
separate the nodes at the same time, acting as if the nodes were similarly charged particles. Even
though this approach is inspired by nature, the underlying forces do not necessarily need to follow
the actual physical behaviour, e.g. attractive forces might not be linear. Usually an optimal distance
between two nodes is defined based on some heuristic, for example Fruchtermann and Reingold [2]
define the optimal distance between vertices as

𝑘 = 𝐶

√︂
area

number of vertices
(1)

(𝑎𝑟𝑒𝑎 is the space in which the graph can be drawn in, 𝐶 is an experimentally found parameter
which the authors do not specify in greater detail) and then compute the attractive and repulsive
forces as

𝑓𝑎 (𝑑) =
𝑑2

𝐶
and 𝑓𝑟 (𝑑) =

−𝑘2
𝑑

(2)

where 𝑑 is the the euclidean distance between two nodes. A prior approach by Eades [1] used
logarithmic attractive forces (expensive). There are three steps to each iteration of the algorithm:
Calculate the effect of attractive forces on each vertex; then the effect of repulsive forces; and
finally limit the total displacement by the temperature, another empirically chosen parameter
that reduces the displacement over time. Even though this approach works quite well for small to
medium graphs, speed ups are very complicated and more importantly, only taking the euclidean
distance between pairing nodes into account for the the computation of the attractive forces, is a big
limitation. Even though Fruchtermann’s algorithm got replaced by the approach in the following
subsection, it was a helpful and necessary starting point for our graph visualization.

3.4 In depth: force directed Graph drawing via SGD
Taking the distance in euclidean space as the optimal distance between nodes, generally leads to
some unsolvable inaccuracies in the drawing. Multidimensional scaling (MDS) is a technique to
solve this type of problem. It attempts to minimize the disparity between ideal and low-dimensional
distances. Distance scaling is most commonly used for graph drawings. We can write out an

Fig. 4. Pairwise distance update between two randomly selected nodes, following the optimal distance
constraint. (Image from [3])



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Tillmann Fehrenbach

objective that we want to minimize, also called the error function or the stress in the system.

𝑠𝑡𝑟𝑒𝑠𝑠 (𝑋 ) =
∑︁
𝑖 𝑗

𝜔𝑖 𝑗 (


X𝑖 − 𝑋 𝑗



 − 𝑑𝑖 𝑗 )2 (3)

where 𝑋 contains the coordinates of each vertex in low-dimensional space, and 𝑑 is the ideal
distance between them. A weighting factor𝜔 is used to either emphasize or dampen the importance
of certain pairs. For the problem of graph layout, the most common approach is to set 𝑑𝑖 𝑗 to the
shortest graph theoretic path distance between vertices i and j, with𝑤𝑖 𝑗 = 𝑑𝑖

−2
𝑗 to offset the extra

weight given to longer paths due to squaring the difference. Zheng et al. [3] from 2018 describe
a method of minimizing stress by using stochastic gradient descent (SGD), which approximates
the gradient of a sum of functions using the gradient of its individual terms. In this approach this
corresponds to moving a single pair of vertices at a time, i.e. in each iteration a pair of vertices in
the graph is chosen at random. Pseudocode of the algorithm is given in Algorithm 1.

Finding All Pairs Shortest Paths (APSP) in a given graph is an overhead in the algorithm. In
order to reduce the the amount of paths computed, we use randomly placed pivot nodes whose
shortest paths are used as an approximation for the shortest paths of vertices close to them. Every
non-pivot node in the graph computes and stores its closest Pivot. The actual distances between all
pairs of pivots are being computed before the actual drawing algorithm via bidirectional Dijkstra.
If two nodes have the same pivot node, the actual distance between them is computed in order to
increase the resolution and prioritize close nodes, having in mind that close nodes affect the local
layout more than nodes that are far away from each other. It is important to note that the amount
of pivots used in a graph can greatly affect the later layout of the graph, we generally chose 1 to 5
percent of nodes as pivots for larger graphs (above 1000 nodes).

input : graph G = (V,E)
output : k-dimensional layout X with n vertices
𝑑{𝑖, 𝑗 } ← shortest Paths
X← 𝑟𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥 (𝑛, 𝑘)
for 𝜂 in annealing schedule do

foreach {𝑖, 𝑗 : 𝑖 < 𝑗} in random order do
𝜇 ← 𝜔𝑖 𝑗 ∗ 𝜂
if 𝜇 > 1 then

𝜇 ← 1
end

r← ∥X𝑖−X𝑗 ∥−𝑑𝑖 𝑗
2

X𝑖−X𝑗

∥X𝑖−X𝑗 ∥
X𝑖 ← X𝑖 − 𝜇r
X𝑗 ← X𝑗 + 𝜇r

end
end

Algorithm 1: Stress minimization via Stochastic Gradient Descent as described in Zheng et
al. 𝜂 is a step size that tends towards 0 as the iteration number increases, r is the direction of
displacement that the authors derive from the gradient of the stress function. Figure 4 provides
a visualization of the mentioned forces.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Advanced Practical - Building ALVIS, a web-based graph visualization tool 9

Fig. 5. Showcase of a converging layout using the the stress minimization algorithm from Algorithm 1 with
the distance approximation using 5 pivot nodes.

Fig. 6. A simple tree (ca. 4000 nodes) drawing in euclidean space using recursive angle distribution based on
the weight of a nodes sub-tree.

3.5 Tree drawings and layouts on the Poincare Disk
During the development of the app we also tried out other drawing approaches. The first one
was a simple spherical tree drawing. A very common approach is to recursively allocate an angle
of a circle (with radius equal to the current depth of the tree node), depending on the relative
weight of its sub-tree compared to the weights of the sub-trees of its sibling nodes. The resulting
drawing is nicely balanced, shows the hierarchical structure of the data set and can be computed
fast (linear time in the amount of nodes). Figure 4 shows such a drawing, the distance to the root
is exponentially decreasing, which is a cosmetic operation after the actual algorithm finished. A
simple modification transfers this approach to a drawing on the Poincare disk, where the distances
between two nodes p and q is not measured with the euclidean norm but with the following
formula:

𝑑 (𝑝, 𝑞) = arcosh
(
1 + 2 ∥𝑝 − 𝑞∥2 𝑟 2

(𝑟 2 − ∥𝑝 ∥2) (𝑟 2 − ∥𝑞∥2)

)
(4)

4 CONCLUSION AND FUTUREWORK
Even though the overall User Interface is functional and working, there are still a lot of things that
need further improvement, such as increasing the expressiveness of the C++ logger, in order to be
able to visualize coarsening or partitioning of a graph. The most important part for now would be
to increase the amount of algorithms to choose from. This requires a lot of work since not only

https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/trees.pdf
https://www.ms.uky.edu/~droyster/courses/spring08/math6118/Classnotes/Chapter09.pdf


442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Tillmann Fehrenbach

Fig. 7. Tree Layout using Distances as described in Equation (2).

does every algorithm need to be designed individually with our logger, but also the rest of the user
interface such as the interactive introductory part in Mathjax has to be tailored to each problem.
We believe that our layout of combining a modern Framework (Next.js/React.js) with WebAssembly
is well suited for future projects. In order to increase performance, the use of general purpose
programming on the GPU (GPGPU) via WebGPU will take a larger part in the future of this project,
since it enables highly parallel execution of algorithms. One possible use case is to expand our
visualization framework to the field of Deep Learning algorithms, due to their inherent graphical
structure.

REFERENCES
[1] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.
[2] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement. Software: Practice

and Experience, 21(11):1129–1164, 1991. doi: https://doi.org/10.1002/spe.4380211102. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/spe.4380211102.

[3] Jonathan X. Zheng, Samraat Pawar, and Dan F. M. Goodman. Graph drawing by stochastic gradient descent, 2017. URL
https://arxiv.org/abs/1710.04626.

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380211102
https://arxiv.org/abs/1710.04626

	Abstract
	1 INTRODUCTION
	2 Web Development Overview
	2.1 Tech Stack
	2.2 An introduction to WebAssembly
	2.3 Handling graphics in the Browser
	2.4 Designing the UI
	2.5 Data Flow and Logging State

	3 Visualizing Graph Data
	3.1 What is a Graph?
	3.2 What is graph drawing?
	3.3 In depth: force directed Graph drawing
	3.4 In depth: force directed Graph drawing via SGD
	3.5 Tree drawings and layouts on the Poincare Disk

	4 CONCLUSION AND FUTURE Work
	References

