Approximate Metric 3D Embeddings of the 3-Sphere

HEGL project, WS 23/24

C. Schnörr

October 10, 2023

Abstract

The topic of this project is to convert subsets of the 3 -sphere into finite metric spaces in various ways and to explore structure-preserving 3D Euclidean embeddings for visualization. Besides differential geometry and parametrizations of the 3 -sphere, this involves basic techniques from data analysis (multidimensional scaling, graph Laplacians and spectral embeddings; rigid registration of point clouds), numerical optimization and linear algebra, programming and visualization.

Organization. Either a single group up to 5 students works on this project, or few smaller groups solve subtasks and put together their results. Project participants choose their favorite software for numerical computation and rendering.

Visualizing the 3-sphere $S^{3} \subset \mathbb{R}^{4}$ is not possible since our perception can only make sense of objects up to dimension 3. Therefore, one applies a mapping $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ in order to project an object of interest. A canonical choice is the stereographic projection which yields appealing graphical illustrations - see "Visualizing the Hopf fibration (HEGL project SS 2022)".

While stereographic projection preserves the topological structure and even is conformal, it suffers from distortion of the metric structure (Figure 1).

Figure 1: Left: Stereographic projection (red vertices) of the 3-cube (blue vertices) distorts the metric structure. Center: An alternative metric 2D embedding of the 3-cube which approximately preserves the metric structure. Right: An approximate metric 3D embedding of the 4-cube.

The topic of this project is to convert subsets of the 3 -sphere into finite metric spaces in various ways and to explore structure-preserving 3D Euclidean embeddings for visualization. Besides differential geometry and parametrizations of the 3 -sphere, this involves basic techniques from data analysis (multidimensional scaling, graph Laplacians and spectral embeddings; rigid registration of point clouds), numerical optimization and linear algebra, programming and visualization.

Organization. Either a single group up to 5 students works on this project, or few smaller groups solve subtasks and put together their results. Project participants choose their favorite software for numerical computation and rendering.

